In this case I'm using the RWeka package and J48 within the Cost Sensitive Classifier function. I know with the package "party" I can plot a normal J48 tree, but not sure how to get a plot with the CSC output.
library(RWeka)
csc <- CostSensitiveClassifier(Species ~ ., data = iris,
control = Weka_control(`cost-matrix` = matrix(c(0,10, 0, 0, 0, 0, 0, 10, 0),
ncol = 3),
W = "weka.classifiers.trees.J48",
M = TRUE))
csc
CostSensitiveClassifier using minimized expected misclasification cost
weka.classifiers.trees.J48 -C 0.25 -M 2
Classifier Model
J48 pruned tree
------------------
Petal.Width <= 0.6: setosa (50.0)
Petal.Width > 0.6
| Petal.Width <= 1.7
| | Petal.Length <= 4.9: versicolor (48.0/1.0)
| | Petal.Length > 4.9
| | | Petal.Width <= 1.5: virginica (3.0)
| | | Petal.Width > 1.5: versicolor (3.0/1.0)
| Petal.Width > 1.7: virginica (46.0/1.0)
Number of Leaves : 5
Size of the tree : 9
Cost Matrix
0 0 0
10 0 10
0 0 0
plot(csc)
Error in xy.coords(x, y, xlabel, ylabel, log) : 'x' is a list, but does not have components 'x' and 'y'
Any help would be great.
dput(csc)
structure(list(classifier = <S4 object of class structure("jobjRef", package = "rJava")>,
predictions = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("setosa", "versicolor",
"virginica"), class = "factor"), call = CostSensitiveClassifier(formula = Species ~
., data = iris, control = Weka_control(`cost-matrix` = matrix(c(0,
10, 0, 0, 0, 0, 0, 10, 0), ncol = 3), W = "weka.classifiers.trees.J48",
M = TRUE)), handlers = structure(list(control = list(
function (x)
{
if (inherits(x, "Weka_control")) {
ind <- which(names(x) %in% substring(options,
2L))
if (any(ind))
x[ind] <- lapply(x[ind], fun, ...)
}
else {
x <- as.character(x)
ind <- which(x %in% options)
if (any(ind))
x[ind + 1L] <- sapply(x[ind + 1L], fun, ...)
}
x
}, function (x)
{
if (inherits(x, "Weka_control")) {
ind <- which(names(x) %in% substring(options,
2L))
if (any(ind))
x[ind] <- lapply(x[ind], fun, ...)
}
else {
x <- as.character(x)
ind <- which(x %in% options)
if (any(ind))
x[ind + 1L] <- sapply(x[ind + 1L], fun, ...)
}
x
}), data = function (mf)
{
terms <- attr(mf, "terms")
if (any(attr(terms, "order") > 1L))
stop("Interactions are not allowed.")
factors <- attr(terms, "factors")
varnms <- rownames(factors)[c(TRUE, rowSums(factors)[-1L] >
0)]
mf[, sub("^`(.*)`$", "\\1", varnms), drop = FALSE]
}), .Names = c("control", "data")), levels = c("setosa",
"versicolor", "virginica"), terms = Species ~ Sepal.Length +
Sepal.Width + Petal.Length + Petal.Width), .Names = c("classifier",
"predictions", "call", "handlers", "levels", "terms"), class = c("CostSensitiveClassifier",
"Weka_meta", "Weka_classifier"))
dput(csc)
if it's not too large? – MrFlick