Your data has a minor peak around 5 and a major peak around 101.
If I knew something about my data then I could might window around an acceptable range of offsets as shown below.
Code for initial exploration:
figure; clc;
subplot(2,1,1)
plot(1:numel(b), b);
hold on
plot(1:numel(c), c, 'r');
legend('b','c')
subplot(2,1,2)
plot(crossCorr,'.b-')
hold on
plot(peakIndex,crossCorr(peakIndex),'or')
legend('crossCorr','peak')
Initial Image:
If you zoom into the first peak you can see that it is not only high around 5, but it is polynomial "enough" to allow sub-element offsets. That is convenient.
Image showing :
Here is what the curve-fitting tool gives as the analytic for a cubic:
Linear model Poly3:
f(x) = p1*x^3 + p2*x^2 + p3*x + p4
Coefficients (with 95% confidence bounds):
p1 = 8.515e-013 (8.214e-013, 8.816e-013)
p2 = -3.319e-011 (-3.369e-011, -3.269e-011)
p3 = 2.253e-010 (2.229e-010, 2.277e-010)
p4 = -4.226e-012 (-7.47e-012, -9.82e-013)
Goodness of fit:
SSE: 2.799e-024
R-square: 1
Adjusted R-square: 1
RMSE: 6.831e-013
You can note that the SSE fits to roundoff.
If you compute the root (near n=4) you use the following matlab code:
% Coefficients
p1 = 8.515e-013
p2 = -3.319e-011
p3 = 2.253e-010
p4 = -4.226e-012
% Linear model Poly3:
syms('x')
f = p1*x^3 + p2*x^2 + p3*x + p4
xz1=fzero(@(y) subs(diff(f),'x',y), 4)
and you get the analytic root at 4.01420240431444.
EDIT:
Hmmm. How about fitting a gaussian mixture model to the convolution? You sweep through a good range of component count, you do between 10 and 30 repeats, and you find which component count has the best/lowest BIC. So you fit a gmdistribution to the lower subplot of the first figure, then test the covariance at the means of the components in decreasing order.
I would try the offset at the means, and just look at sum squared error. I would then pick the offset that has the lowest error.
Procedure:
- compute cross correlation
- fit cross correlation to Gaussian Mixture model
- sweep a reasonable range of components (start with 1-10)
- use a reasonable number of repeats (10 to 30 depending on run-to-run variation)
- compute Bayes Information Criterion (BIC) for each level, pick the lowest because it indicates a reasonable balance of error and parameter count
- each component is going to have a mean, evaluate that mean as a candidate offset and compute sum-squared error (sse) when you offset like that.
- pick the offset of the component that gives best SSE
Let me know how well that works.