I'm attempting to calculate the area of a polygon that lies on a plane (a collection co-planar points forming a non-intersecting closed shape), and I know a method that can calculate the area of an irregular (or any) polygon in two dimensions - but not three. My solution is to rotate the plane so that it's normal is 0 in the z direction (so I can treat it like it's 2D) and then run the 2D area function.
The problem is I have NO idea how to actually determine the rotation axes and amounts to flatten a plane on it's Z-axis. I do my rotation through the easiest method I could find for 3 dimensional rotation: Rotation Matrices. So, given that I'm trying to use rotation matrices to do my rotation, how do I figure out the angles to rotate my plane by to be oriented in the same direction as another vector? I don't actually know much calculus or Euclidean geometry, so whichever solution requires me to teach myself the least of both is the ideal solution. Is there a better way?
Here's my attempt below, which doesn't even come close to getting the plane flat on the Z axis. This is an instance method of my "Surface" class, which is a derivative of my "Plane" class, and has an array of co-planar points (IntersectPoints) forming a closed polygon.
public virtual double GetArea()
{
Vector zUnit = new Vector(0, 0, 1); //vector perprendicualr to z
Vector nUnit = _normal.AsUnitVector();
Surface tempSurface = null;
double result = 0;
if (nUnit != zUnit && zUnit.Dot(nUnit) != 0) //0 = perprendicular to z
{
tempSurface = (Surface)Clone();
double xAxisAngle = Vector.GetAxisAngle(nUnit, zUnit, Physics.Formulae.Axes.X);
double yAxisAngle = Vector.GetAxisAngle(nUnit, zUnit, Physics.Formulae.Axes.Y);
double rotationAngle = Vector.GetAxisAngle(nUnit, zUnit, Physics.Formulae.Axes.Z);
tempSurface.Rotate(xAxisAngle, yAxisAngle, rotationAngle); //rotating plane so that it is flat on the Z axis
}
else
{
tempSurface = this;
}
for (int x = 0; x < tempSurface.IntersectPoints.Count; x++) //doing a cross sum of each point
{
Point curPoint = tempSurface.IntersectPoints[x];
Point nextPoint;
if (x == tempSurface.IntersectPoints.Count - 1)
{
nextPoint = tempSurface.IntersectPoints[0];
}
else
{
nextPoint = tempSurface.IntersectPoints[x + 1];
}
double cross1 = curPoint.X * nextPoint.Y;
double cross2 = curPoint.Y * nextPoint.X;
result += (cross1 - cross2); //add the cross sum of each set of points to the result
}
return Math.Abs(result / 2); //divide cross sum by 2 and take its absolute value to get the area.
}
And here are my core rotation and get axis angle methods:
private Vector Rotate(double degrees, int axis)
{
if (degrees <= 0) return this;
if (axis < 0 || axis > 2) return this;
degrees = degrees * (Math.PI / 180); //convert to radians
double sin = Math.Sin(degrees);
double cos = Math.Cos(degrees);
double[][] matrix = new double[3][];
//normalizing really small numbers to actually be zero
if (Math.Abs(sin) < 0.00000001)
{
sin = 0;
}
if (Math.Abs(cos) < 0.0000001)
{
cos = 0;
}
//getting our rotation matrix
switch (axis)
{
case 0: //x axis
matrix = new double[][]
{
new double[] {1, 0, 0},
new double[] {0, cos, sin * -1},
new double[] {0, sin, cos}
};
break;
case 1: //y axis
matrix = new double[][]
{
new double[] {cos, 0, sin},
new double[] {0, 1, 0},
new double[] {sin * -1, 0, cos}
};
break;
case 2: //z axis
matrix = new double[][]
{
new double[] {cos, sin * -1, 0},
new double[] {sin, cos, 0},
new double[] {0, 0, 1}
};
break;
default:
return this;
}
return Physics.Formulae.Matrix.MatrixByVector(this, matrix);
}
public static double GetAxisAngle(Point a, Point b, Axes axis, bool inDegrees = true)
{ //pretty sure this doesnt actually work
double distance = GetDistance(a, b);
double difference;
switch (axis)
{
case Axes.X:
difference = b.X - a.X;
break;
case Axes.Y:
difference = b.Y - a.Y;
break;
case Axes.Z :
difference = b.Z - a.Z;
break;
default:
difference = 0;
break;
}
double result = Math.Acos(difference / distance);
if (inDegrees == true)
{
return result * 57.2957; //57.2957 degrees = 1 radian
}
else
{
return result;
}
}