I am trying to compare performance in CPU and GPU. I have
- CPU : Intel® Core™ i5 CPU M 480 @ 2.67GHz × 4
- GPU : NVidia GeForce GT 420M
I can confirm that GPU is configured and works correctly with CUDA.
I am implementing Julia set computation. http://en.wikipedia.org/wiki/Julia_set Basically for every pixel, if the co-ordinate is in the set it will paint it red else paint it white.
Although, I get identical answer with both CPU and GPU but instead of getting a performance improvement, I get a performance penalty by using GPU.
Running times
- CPU : 0.052s
- GPU : 0.784s
I am aware that transferring data from device to host can take up some time. But still, how do I know if use of GPU is actually beneficial?
Here is the relevant GPU code
#include <stdio.h>
#include <cuda.h>
__device__ bool isJulia( float x, float y, float maxX_2, float maxY_2 )
{
float z_r = 0.8 * (float) (maxX_2 - x) / maxX_2;
float z_i = 0.8 * (float) (maxY_2 - y) / maxY_2;
float c_r = -0.8;
float c_i = 0.156;
for( int i=1 ; i<100 ; i++ )
{
float tmp_r = z_r*z_r - z_i*z_i + c_r;
float tmp_i = 2*z_r*z_i + c_i;
z_r = tmp_r;
z_i = tmp_i;
if( sqrt( z_r*z_r + z_i*z_i ) > 1000 )
return false;
}
return true;
}
__global__ void kernel( unsigned char * im, int dimx, int dimy )
{
//int tid = blockIdx.y*gridDim.x + blockIdx.x;
int tid = blockIdx.x*blockDim.x + threadIdx.x;
tid *= 3;
if( isJulia((float)blockIdx.x, (float)threadIdx.x, (float)dimx/2, (float)dimy/2)==true )
{
im[tid] = 255;
im[tid+1] = 0;
im[tid+2] = 0;
}
else
{
im[tid] = 255;
im[tid+1] = 255;
im[tid+2] = 255;
}
}
int main()
{
int dimx=768, dimy=768;
//on cpu
unsigned char * im = (unsigned char*) malloc( 3*dimx*dimy );
//on GPU
unsigned char * im_dev;
//allocate mem on GPU
cudaMalloc( (void**)&im_dev, 3*dimx*dimy );
//launch kernel.
**for( int z=0 ; z<10000 ; z++ ) // loop for multiple times computation**
{
kernel<<<dimx,dimy>>>(im_dev, dimx, dimy);
}
cudaMemcpy( im, im_dev, 3*dimx*dimy, cudaMemcpyDeviceToHost );
writePPMImage( im, dimx, dimy, 3, "out_gpu.ppm" ); //assume this writes a ppm file
free( im );
cudaFree( im_dev );
}
Here is the CPU code
bool isJulia( float x, float y, float maxX_2, float maxY_2 )
{
float z_r = 0.8 * (float) (maxX_2 - x) / maxX_2;
float z_i = 0.8 * (float) (maxY_2 - y) / maxY_2;
float c_r = -0.8;
float c_i = 0.156;
for( int i=1 ; i<100 ; i++ )
{
float tmp_r = z_r*z_r - z_i*z_i + c_r;
float tmp_i = 2*z_r*z_i + c_i;
z_r = tmp_r;
z_i = tmp_i;
if( sqrt( z_r*z_r + z_i*z_i ) > 1000 )
return false;
}
return true;
}
#include <stdlib.h>
#include <stdio.h>
int main(void)
{
const int dimx = 768, dimy = 768;
int i, j;
unsigned char * data = new unsigned char[dimx*dimy*3];
**for( int z=0 ; z<10000 ; z++ ) // loop for multiple times computation**
{
for (j = 0; j < dimy; ++j)
{
for (i = 0; i < dimx; ++i)
{
if( isJulia(i,j,dimx/2,dimy/2) == true )
{
data[3*j*dimx + 3*i + 0] = (unsigned char)255; /* red */
data[3*j*dimx + 3*i + 1] = (unsigned char)0; /* green */
data[3*j*dimx + 3*i + 2] = (unsigned char)0; /* blue */
}
else
{
data[3*j*dimx + 3*i + 0] = (unsigned char)255; /* red */
data[3*j*dimx + 3*i + 1] = (unsigned char)255; /* green */
data[3*j*dimx + 3*i + 2] = (unsigned char)255; /* blue */
}
}
}
}
writePPMImage( data, dimx, dimy, 3, "out_cpu.ppm" ); //assume this writes a ppm file
delete [] data
return 0;
}
Further, following suggestions from @hyde I have looped the computation-only part to generate 10,000 images. I am not bothering to write all those images though. Computation only is what I am doing.
Here are the running times
- CPU : more than 10min and code still running
- GPU : 1m 14.765s