This answer is in response to the issues brought up by illissius, point by point:
- It's ugly to use. $(fooBar ''Asdf) just does not look nice. Superficial, sure, but it contributes.
I agree. I feel like $( ) was chosen to look like it was part of the language - using the familiar symbol pallet of Haskell. However, that's exactly what you /don't/ want in the symbols used for your macro splicing. They definitely blend in too much, and this cosmetic aspect is quite important. I like the look of {{ }} for splices, because they are quite visually distinct.
- It's even uglier to write. Quoting works sometimes, but a lot of the time you have to do manual AST grafting and plumbing. The [API][1] is big and unwieldy, there's always a lot of cases you don't care about but still need to dispatch, and the cases you do care about tend to be present in multiple similar but not identical forms (data vs. newtype, record-style vs. normal constructors, and so on). It's boring and repetitive to write and complicated enough to not be mechanical. The [reform proposal][2] addresses some of this (making quotes more widely applicable).
I also agree with this, however, as some of the comments in "New Directions for TH" observe, the lack of good out-of-the-box AST quoting is not a critical flaw. In this WIP package, I seek to address these problems in library form: https://github.com/mgsloan/quasi-extras . So far I allow splicing in a few more places than usual and can pattern match on ASTs.
- The stage restriction is hell. Not being able to splice functions defined in the same module is the smaller part of it: the other consequence is that if you have a top-level splice, everything after it in the module will be out of scope to anything before it. Other languages with this property (C, C++) make it workable by allowing you to forward declare things, but Haskell doesn't. If you need cyclic references between spliced declarations or their dependencies and dependents, you're usually just screwed.
I've run into the issue of cyclic TH definitions being impossible before... It's quite annoying. There is a solution, but it's ugly - wrap the things involved in the cyclic dependency in a TH expression that combines all of the generated declarations. One of these declarations generators could just be a quasi-quoter that accepts Haskell code.
- It's unprincipled. What I mean by this is that most of the time when you express an abstraction, there is some kind of principle or concept behind that abstraction. For many abstractions, the principle behind them can be expressed in their types. When you define a type class, you can often formulate laws which instances should obey and clients can assume. If you use GHC's [new generics feature][3] to abstract the form of an instance declaration over any datatype (within bounds), you get to say "for sum types, it works like this, for product types, it works like that". But Template Haskell is just dumb macros. It's not abstraction at the level of ideas, but abstraction at the level of ASTs, which is better, but only modestly, than abstraction at the level of plain text.
It's only unprincipled if you do unprincipled things with it. The only difference is that with the compiler implemented mechanisms for abstraction, you have more confidence that the abstraction isn't leaky. Perhaps democratizing language design does sound a bit scary! Creators of TH libraries need to document well and clearly define the meaning and results of the tools they provide. A good example of principled TH is the derive package: http://hackage.haskell.org/package/derive - it uses a DSL such that the example of many of the derivations /specifies/ the actual derivation.
- It ties you to GHC. In theory another compiler could implement it, but in practice I doubt this will ever happen. (This is in contrast to various type system extensions which, though they might only be implemented by GHC at the moment, I could easily imagine being adopted by other compilers down the road and eventually standardized.)
That's a pretty good point - the TH API is pretty big and clunky. Re-implementing it seems like it could be tough. However, there are only really only a few ways to slice the problem of representing Haskell ASTs. I imagine that copying the TH ADTs, and writing a converter to the internal AST representation would get you a good deal of the way there. This would be equivalent to the (not insignificant) effort of creating haskell-src-meta. It could also be simply re-implemented by pretty printing the TH AST and using the compiler's internal parser.
While I could be wrong, I don't see TH as being that complicated of a compiler extension, from an implementation perspective. This is actually one of the benefits of "keeping it simple" and not having the fundamental layer be some theoretically appealing, statically verifiable templating system.
- The API isn't stable. When new language features are added to GHC and the template-haskell package is updated to support them, this often involves backwards-incompatible changes to the TH datatypes. If you want your TH code to be compatible with more than just one version of GHC you need to be very careful and possibly use
CPP
.
This is also a good point, but somewhat dramaticized. While there have been API additions lately, they haven't been extensively breakage inducing. Also, I think that with the superior AST quoting I mentioned earlier, the API that actually needs to be used can be very substantially reduced. If no construction / matching needs distinct functions, and are instead expressed as literals, then most of the API disappears. Moreover, the code you write would port more easily to AST representations for languages similar to Haskell.
In summary, I think that TH is a powerful, semi-neglected tool. Less hate could lead to a more lively eco-system of libraries, encouraging the implementation of more language feature prototypes. It's been observed that TH is an overpowered tool, that can let you /do/ almost anything. Anarchy! Well, it's my opinion that this power can allow you to overcome most of its limitations, and construct systems capable of quite principled meta-programming approaches. It's worth the usage of ugly hacks to simulate the "proper" implementation, as this way the design of the "proper" implementation will gradually become clear.
In my personal ideal version of nirvana, much of the language would actually move out of the compiler, into libraries of these variety. The fact that the features are implemented as libraries does not heavily influence their ability to faithfully abstract.
What's the typical Haskell answer to boilerplate code? Abstraction. What're our favorite abstractions? Functions and typeclasses!
Typeclasses let us define a set of methods, that can then be used in all manner of functions generic on that class. However, other than this, the only way classes help avoid boilerplate is by offering "default definitions". Now here is an example of an unprincipled feature!
Minimal binding sets are not declarable / compiler checkable. This could lead to inadvertent definitions that yield bottom due to mutual recursion.
Despite the great convenience and power this would yield, you cannot specify superclass defaults, due to orphan instances http://lukepalmer.wordpress.com/2009/01/25/a-world-without-orphans/ These would let us fix the numeric hierarchy gracefully!
Going after TH-like capabilities for method defaults led to http://www.haskell.org/haskellwiki/GHC.Generics . While this is cool stuff, my only experience debugging code using these generics was nigh-impossible, due to the size of the type induced for and ADT as complicated as an AST. https://github.com/mgsloan/th-extra/commit/d7784d95d396eb3abdb409a24360beb03731c88c
In other words, this went after the features provided by TH, but it had to lift an entire domain of the language, the construction language, into a type system representation. While I can see it working well for your common problem, for complex ones, it seems prone to yielding a pile of symbols far more terrifying than TH hackery.
TH gives you value-level compile-time computation of the output code, whereas generics forces you to lift the pattern matching / recursion part of the code into the type system. While this does restrict the user in a few fairly useful ways, I don't think the complexity is worth it.
I think that the rejection of TH and lisp-like metaprogramming led to the preference towards things like method-defaults instead of more flexible, macro-expansion like declarations of instances. The discipline of avoiding things that could lead to unforseen results is wise, however, we should not ignore that Haskell's capable type system allows for more reliable metaprogramming than in many other environments (by checking the generated code).