In an application I'm working on in Racket I need to take a list of numbers and partition the list into sub-lists of consecutive numbers: (In the actual application, I'll actually be partitioning pairs consisting of a number and some data, but the principle is the same.)
i.e. if my procedure is called chunkify
then:
(chunkify '(1 2 3 5 6 7 9 10 11)) -> '((1 2 3) (5 6 7) (9 10 11))
(chunkify '(1 2 3)) -> '((1 2 3))
(chunkify '(1 3 4 5 7 9 10 11 13)) -> '((1) (3 4 5) (7) (9 10 11) (13))
(chunkify '(1)) -> '((1))
(chunkify '()) -> '(())
etc.
I've come up with the following in Racket:
#lang racket
(define (chunkify lst)
(call-with-values
(lambda ()
(for/fold ([chunk '()] [tail '()]) ([cell (reverse lst)])
(cond
[(empty? chunk) (values (cons cell chunk) tail)]
[(equal? (add1 cell) (first chunk)) (values (cons cell chunk) tail)]
[else (values (list cell) (cons chunk tail))])))
cons))
This works just fine, but I'm wondering given the expressiveness of Racket if there isn't a more straightforward simpler way of doing this, some way to get rid of the "call-with-values" and the need to reverse the list in the procedure etc., perhaps some way comepletely different.
My first attempt was based very loosely on a pattern with a collector in "The Little Schemer" and that was even less straightforward than the above:
(define (chunkify-list lst)
(define (lambda-to-chunkify-list chunk) (list chunk))
(let chunkify1 ([list-of-chunks '()]
[lst lst]
[collector lambda-to-chunkify-list])
(cond
[(empty? (rest lst)) (append list-of-chunks (collector (list (first lst))))]
[(equal? (add1 (first lst)) (second lst))
(chunkify1 list-of-chunks (rest lst)
(lambda (chunk) (collector (cons (first lst) chunk))))]
[else
(chunkify1 (append list-of-chunks
(collector (list (first lst)))) (rest lst) list)])))
What I'm looking for is something simple, concise and straightforward.